
Measures and Measurement for Secure Software Development 1
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Measures and Measurement for Secure Software Development
James McCurley, Software Engineering Institute [vita2]

Dave Zubrow, Software Engineering Institute [vita5]

Carol Dekkers, Quality Plus Technologies, Inc. [vita6]

Copyright © 2007, 2008 Carnegie Mellon University

2007-02-05; Updated 2008-09-29 L1 / D/P, L7

This article discusses how measurement can be applied to software development processes and work
products to monitor and improve the security characteristics of the software being developed. It is aimed
at practitioners—designers, architects, requirements specialists, coders, testers, and managers—who desire
guidance as to the best way to approach measurement for secure development. It does not address security
measurements of system or network operations.

Overview
This practice area description discusses how measurement can be applied to software development processes
and work products to monitor and improve the security characteristics of the software being developed.
Measurement is highly dependent on aspects of the software development life cycle (SDLC), including
policies, processes, and procedures that reflect (or not) security concerns. This topic area is aimed at
practitioners—designers, architects, requirements specialists, coders, testers, and managers—who desire
guidance as to the best way to approach measurement to monitor and improve the security characteristics of
the software being developed. It does not address security measurements of system or network operations,
nor does it address an organization’s physical security needs.

Measurement and the Software Development Life Cycle
Measurement of both the product and development processes has long been recognized as a critical activity
for successful software development. Good measurement practices and data enable realistic project planning,
timely monitoring of project progress and status, identification of project risks, and effective process
improvement. Appropriate measures and indicators of software artifacts such as requirements, designs, and
source code can be analyzed to diagnose problems and identify solutions during project execution and reduce
defects, rework (effort, resources, etc.), and cycle time. These practices enable organizations to achieve

higher quality products and reflect more mature processes, as delineated by the CMMI.12 Watchfire has
published a short description of typical application security activities for each level of the CMMI [Graf

200513]. Unfortunately, useful measurements related to the development of products coded to meet the
requirements of secure software are in their infancy, and no consensus exists as to what measures constitute
best practices. A review of the existing technical literature reveals the scarcity of any publicly reported,
validated security measurements related to the software development life cycle. Nonetheless, there are some
measures and practices used in software development that can be fruitfully extended to address security
requirements.

SLDC areas related to the definition and use of measures for secure development addressed in the Build
Security In modules include

• Requirements Engineering14

• Architectural Risk Analysis15

2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/225-BSI.html (McCurley, James)
5. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/224-BSI.html (Zubrow, Dave)
6. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/226-BSI.html (Dekkers, Carol)
12. CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
13. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_graf05 (Security-

Specific Bibliography)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/225-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/224-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/226-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_graf05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_graf05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/architecture.html

Measures and Measurement for Secure Software Development 2
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

• Assembly, Integration, and Evolution16

• Code Analysis17

• Risk-Based and Functional Security Testing18

• Software Development Life-Cycle (SDLC) Process19

• Coding Rules20

• Training & Awareness21

• Project Management22

Risk management in general is addressed separately in the module Risk Management Framework23. In
contrast to the traditional focus of risk management on project failure in software development, it must now
be extended to address the malicious exploitation of product flaws after release and throughout maintenance.

Threat modeling and its use in the SDLC is addressed in the Attack Patterns24 content area. All of these areas
are positively impacted by the use of measurement.

Software Engineering Measurement Process
Recent work to establish a common perspective on how to perform software measurement and analysis can
be found in International Organization for Standardization and International Electrotechnical Commission

(ISO/IEC) 15939 (Software Measurement Process standard), the Capability Maturity Model27 IIntegration
(CMMI) Measurement and Analysis process area, and the guidance provided by the Practical Software and

Systems Measurement (PSM) project. For purposes of description, the practices from the CMMI® model are
presented here. The practices are organized around two major goals or themes: aligning measurement and
analysis activities with organizational and project goals and then performing the measurement and analysis
activities. Briefly, the practices for aligning measurement are

• Establish Measurement Objectives (Goals)

• Specify Measures

• Specify Data Collection and Storage Procedures

• Specify Analysis Procedures

The practices for performing measurement are

• Collect Measurement Data

• Analyze Measurement Data

• Store Results and Data

• Communicate Results

These practices, shown as steps in Table 1, are important for several reasons: (1) goal driven measurement
is an important first step to ensuring management commitment to the measurement initiative, (2) the
organization and/or project is forced to target and measure the items necessary to meet the objective(s),
and (3) measurement enables greater success by providing a framework where decisions and process
improvement can occur through the analysis of data. The following steps call for the organization and project
to plan their measurement activities so that the right measures are collected, analyzed, and communicated
to the appropriate people in an informative format and timely manner. Project management and insight into
specific aspects of product quality depend on data that is relevant, reliable, current, and valid. Following
these practices (or steps) focuses the measurement activities on the collection of data that will be used, rather
than simply collecting data for the sake of measurement.

With respect to the development of secure software, it is important that security concerns be clearly
identified and addressed in all steps of the measurement and analysis process outlined below.

23. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk/250-BSI.html (Risk Management Framework (RMF))
24. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack.html (Attack Patterns)
27. Capability Maturity Model is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/assembly.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/code.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc.html
http://buildsecurityin.us-cert.gov/bsi/76-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/training.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/project.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk/250-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack.html

Measures and Measurement for Secure Software Development 3
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Table 1. Measurement and Analysis Process

Step Number Step Name Input Techniques Critical
Participants

Output

1 Establish
Measurement
Objectives
(Goals)

Software/system
requirements

See
Requirements

Engineering29;
also elicitation

practice30 area

Stakeholders,
requirements
team

Agreed-to
measurement
objectives
(for which the
attainment can
be measured)

2 Specify
Measures

Measurement
objectives,
SDLC

Facilitated work
sessions

Measurement
analysts, process
engineers,
security subject
matter experts,
users/customers

Measurement
definitions
for security;
focus on
problem-prone
modules; known
vulnerabilities;
define needed
security levels

3 Specify Data
Collection
and Storage
Procedures

Measurement
definitions,
SDLC

Procedure /
process mapping
(and potentially
design if a
current void)

Process
engineers,
designers,
practitioners

Process
changes,
training needs,
tool needs

4 Specify
Analysis
Procedures

Measurement
objectives and
definitions
(GQM)

Literature
review,
elicitation

Process
engineers,
measurement
analysts,
security experts

Identified
statistical and/
or qualitative
analytical
techniques

5 Collect
Measurement
Data

Measurement
plan, data
collection
tools and
infrastructure,
instrumented
processes

Automated tools
and manual
forms associated
with artifact
inspections and
testing

Practitioners,
testers,
measurement
analysts, quality
assurance

Data in usable
form (e.g.,
database,
spreadsheet)

6 Analyze
Measurement
Data

Output of Step 5 Specified in
Step 4

Measurement
analysts

Summary,
graphical
displays,
detailed results

7 Store Data and
Results

Outputs of Steps
5 & 6

Inspection
database or test
results database

Measurement
analysts,
database
administrators

Retrievable
source data and
analytical results

8 Communicate
Results

Analyst
summary,
graphical report

Formatted
results with
interpretation
and
recommendations

Project
engineers,
project/line
management,
security experts

Feedback to
development
team, program
manager

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/533-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/533-BSI.html

Measures and Measurement for Secure Software Development 4
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Effective use of the above process relies first on agreeing on the desired security characteristics and the
importance of achieving the resultant measurement objectives, which can be applied to both product and the
development process. These goals rely on explicit system requirements—which means that security aspects
must be specified early. The organization should assess the risk environment to address probable threats and
translate these concerns into specific requirements addressing security as well as design and implement a
development process that will ensure the “building in” of such requirements.

After security-related requirements of the product are specified, measurement objectives may be formulated
that will provide insight into achieving the security requirements. Examples of analytical questions which
lead to measurement objectives include the following:

• What vulnerabilities have been detected in our products? Are our current development practices
adequate to prevent the recurrence of the vulnerabilities?

• What process points are most vulnerable to the introduction of security-related risks (e.g., injecting
reused code/modules into programs—where the variables could go unchecked, etc.)?

• What proportion of defects relate to security concerns and requirements? Do defect classification
schemes include security categories?

• To what extent do practitioners comply with security-related processes and procedures?

• To what extent are security concerns addressed in the intermediate workproducts (requirements, design,
etc.)? Have measures associated with security requirements and their implementation been defined and
planned?

• What are the critical and vulnerable modules? Have vulnerabilities been identified and addressed?

Threat modeling, or the attempt to identify likely types and sources of attacks, can also form a significant
guiding requirement to the development processes for secure products. A recent thesis by Stuart E.
Schechter at Harvard’s Department of Computer Science uses economic models for valuing the discovery

of vulnerabilities in the final or end product during development [Schechter 200439]. His measurement of
security strength depends most on threat scenarios to assign values to vulnerabilities in an effort to extend
a market approach to the development process. Many risk and threat methodologies are available publicly,
and Microsoft has published extensive materials that delineate the company’s approach to analyzing and

mitigating threat risks during the SDLC [Microsoft 200340, MSDN 200441].

Process Measures for Secure Development
Process artifacts that implement security measurement objectives for the development process should
address

• the existence of security policies applicable to the SDLC (roles, procedures, responsibilities,
management, coding rules, acceptance/release criteria, etc.)

• compliance to the above

• efficiency and effectiveness over time

The security measurement objectives for the development process are identical to general measurement
objectives—they need to be included in the process implementation. Such measures could be implemented
as part of an organization’s integrated quality assurance function.

Although targeted for systems development and risk assessment as a whole, useful guidance for
measurement of this type can be found in the NIST publication Security Metrics Guide for Information

39. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_schechter04
(Security-Specific Bibliography)

40. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_microsoft03
(Security-Specific Bibliography)

41. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_msdn04
(Security-Specific Bibliography)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_schechter04
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_microsoft03
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_msdn04

Measures and Measurement for Secure Software Development 5
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Technology Systems [Swanson 0347]. Risk management can encompass secure coding and provides a familiar
framework to incorporate new practices and procedures to address software security issues. As mentioned

in Software Security: Building Security In [McGraw 200648], tracking risk throughout the life cycle of a
software development project affords managers and analysts the ability to assess relative measures of risk
improvement.

The least expensive approach to software development dictates that flaws/defects are identified as early as
possible in the life cycle. Requirements analysis typically addresses the functional aspects of the product,
but with security in mind, additional analysis of non-functional requirements must also be used to identify
security concerns. Security requirements often take the form of what is not supposed to occur but can still
be tracked to closure in the same manner as other requirements. Security requirements can also be a mix
of both functional and non-functional requirements. Threat modeling is especially important to this phase
of the life cycle since it can help in the preparation of test strategies and use cases. This risk-based view of
development carries through the design phase with new insight into architectural concerns (see Architecture
module). Proper design incorporating security that is implemented correctly as the code is constructed
minimizes the attackability of the final product. Again, effective code policies can be tracked for compliance
during design and through the remainder of the life cycle.

Testing schedules have often suffered in past projects as the need to deploy the product overrides other
concerns. Security ramifications are changing this view due to the potential impacts of the attackability
of the final product. The functional testing practices of the past prove insufficient to deal with non-
functional security issues. Addressing security up front means having a test strategy throughout the life
cycle where security issues are addressed in each phase and are not passed on to the next phase of product
development. As mentioned above, this requires tracking bugs early on, but it also requires security test
planning at an early stage and confronts risk issues identified in the requirements and design stages.

Measurements prove valuable when they are useful, key components of the development effort, as opposed
to mere status reports. To achieve usefulness throughout the life cycle, however, everyone involved must
understand the measurement’s definitions and uses. Appendix A includes a measurement indicator template
for documenting the key attributes of each indicator (e.g., measures used to construct the indicator, algorithm
used, assumptions, etc.). The template has found wide acceptance for documenting the indicators used to
implement software engineering measurement and can be used for new security measurement purposes. It
forms a fundamental building block for any measurement program and, over time, allows the organization
to catalog its metrics definitions and enables trend analysis. As an organization gains experience in building
secure software, such trend analyses provide useful feedback to project managers about the efficacy of each
process. More than that, trends also identify the effectiveness of policies, tools, and techniques and also
allows for better estimation of all engineered parameters, including security.

Defect density is a commonly used measure of product quality. It is often computed as the number of defects
discovered during system test or during the first six months of operational use divided by the size of the
system. Estimates of defects remaining in the product (calculated by techniques such as phase containment,
defect depletion, or capture-recapture techniques) form a natural analogue to estimate remaining security
vulnerabilities in the software. Phase containment of defects refers to an analytical technique that measures
the proportion of defects originating in a phase that are detected within that same phase. It provides a
good characterization of the ability of the development process to maintain quality throughout the SDLC.
The INFOSEC Assurance Capability Maturity Model (IA-CMM) recognizes the impact of quality control
by listing “Establishing Measurable Quality Goals” as one of two features that enable a level 4 rating of

Quantitatively Controlled [NSA 200452].

47. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_swanson03
(Security-Specific Bibliography)

48. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_mcgraw06
(Security-Specific Bibliography)

52. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_nsa04 (Security-
Specific Bibliography)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_swanson03
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_mcgraw06
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_nsa04

Measures and Measurement for Secure Software Development 6
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Product Measures for Secure Development
In the product context, security concerns addressed by measurement objectives may take the form of

• security requirements, which are based on risks determined by threat assessments, privacy policies,
legal implications, and so forth and can be specified as to extent and completeness

• architecture security, which addresses the specified security requirements

• secure design criteria, where security requirements can be traced

• secure coding practices, where integrity can be assessed and measured

Not all measures need to be complicated. Measures should be as simple as possible while still meeting
information needs. For example, in the requirements phase it is useful to know whether security-related
concerns have been included in defining system requirements. This could be measured initially as yes or no.
As experience with the measure accrues over time, the measure could evolve to characterize the extent that
requirements have been checked and tested against security concerns. Determining the extent that security
measurement objectives are implemented during the design and coding phases will make use of tools as well
as inspections or reviews. Many of the inspection measurements will be in the form of traditional defect
identification checklists, to which security-oriented items have been added. Table 2 lists some sources of
vulnerabilities or concerns that have been widely documented, along with a reference to the part of ISO/IEC
9126 that has defined a relevant measure. Software inspection checklists could be extended to include review
of the issues in the table.

For instance, one could track the percentage of sources of input that have validation checks and associated
error handling. That is, checking each input source for length, format, type, and so forth and its associated
exit flows—either accepted then executed or as an error/exception and not executed. The target for this
measure would be 100%, unless performance suffers unacceptably as a result, or it would cost too much
to implement. Note that while this simple measure is an improvement over no measurement for this type
of vulnerability, it does not address the potentially complex issue of determining the effectiveness of an
input validation technique as implemented and whether any particular datum should be counted in the tally.
This would require ongoing tracking of this measure’s performance to characterize the effectiveness of the
input validation techniques used. Over time, the organization can benchmark these kinds of measures as
performance standards.

Table 2. General Code Integrity Issues

• access control

• access controllability (ISO 9126-3)

• access auditability (ISO 9126-3)

• input validation – particularly to address buffer overflows, format string attacks, SQL injection, etc.

• exception handling/error traps (log bad entries, no execute)

• resource management - consumption, retention, race conditions, closure, etc.

• privileges management – principle of least privilege

• system calls, process forks, etc.

• unexpected behavior or system response

• data security issues

• data security levels (proprietary, classified, personal, etc.)

• data encryption (ISO 9126-3)

• data corruption prevention (ISO 9126-3)

• garbage handling/memory management

• risk analysis (identified risks, ranked, with impact analysis, and mitigation and fallback plans)

• implementation bugs

• architectural flaws

Measures and Measurement for Secure Software Development 7
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Web Applications
• scripting issues

• sources of input

• forms, text boxes, dialog windows, etc.

• regular expression checks

• header integrity

• session handling

• cookies

• framework vulnerabilities (Java, .NET, etc.)

• access control: front and back door vulnerability assessment

• penetration attempts versus failures

• depth of successful penetrations before detection

Simple measures of enumeration and appropriate security handling for vulnerabilities would provide insight
into the security status of the system during development. In addition to the above table, a useful list of
“Measurable Security Entities” and “Measurable Concepts” has been published by Practical Software and

Systems Measurement [PSM 200562].

The following questions generated by the PSM/DHS Measurement Technical Working Group address many
of the above issues and can provide starting points for developing measurement objectives:

Planning:

• How much of the system incorporates security features?

• What is the current state of completion of planned security tasks, and how is it measured?

• Do I have qualified people, tools, and environments?

• Do I have qualified tools that support security analysis during development?

• How effective are the security tools?

• How effectively are the tools used?

• How many (insecure) code practices do these tools identify?

• How much does it cost to implement security aspects?

• What is the scope of the security-critical functions, system, and software?

• What are the potential losses/damages?

• What are the external threat agents?

• What security risks are covered by financial means?

• How badly can I be harmed if the system is violated? If something happens, how much is lost or
harmed? How valuable is the data? What is the level of criticality? How is it measured?

Requirements phase:

• Are we following the best practices when expressing (security) requirements?

• Are the security requirements valid? Do they meet user needs?

• Have we traced our security requirements?

• Have all sources been considered (e.g., threats, assets, usability, certification)?

• Have all stakeholders been considered?

• Can I tell if it a security requirement has been satisfied?

• Are security requirements completed on schedule?

• Have requirements been deliberately changed?

62. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_psm05 (Security-
Specific Bibliography)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_psm05

Measures and Measurement for Secure Software Development 8
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

• What is the rate of change of security requirements?

• Does each security requirement trace to an appropriate design unit(s)?

Design:

• Have we followed security design principles?

• Is the design sufficiently detailed to meet the security requirements placed on it?

• Can the design be analyzed to verify that it meets the security policy and requirements?

• What external systems and interfaces does this system depend on for security risk mitigation?

Coding:

• Has each unit complied with the secure coding practices?

• Have bugs been identified, classified, and traced to requirements?

• Do we have adequate coverage of security in user aids (help files, manuals, training, etc.)?

Testing:

• Have we completed security testing (e.g., attacks, penetration)?

• Have all identified security issues been resolved?

• How broad is the security testing?

• Does it include tools and people?

• How many attack patterns are evaluated?

• Are we testing at the unit, subsystem, system-of-system level?

• Is the testing static or dynamic?

• What is the scope of the attack surface?

• Have we provided sufficient information with defects to allow prioritization, root cause analysis, and
remediation of vulnerabilities?

• In resolving non-security defects, have we introduced any security issues?

• What is the current progress of evidence development?

The following measures from a variety of sources have been suggested as useful:

• number of security defects discovered in-house versus in the field

• number of security defects detected in strategy or design versus in the field (repeat for each phase)

• predicted versus actual labor costs for fixing defects at each stage of development

• security defects per thousands of lines of code (KLOC)

• number (and percent) of security defects considered low/medium/high/critical

• number (and percent) of security defects fixed

• average or median time (and cost) to fix each defect

• quartile rankings for each developer group, based on defects/KLOC and average or median time to fix,
ranked by severity

And finally, questions the organization should address as a whole:

• Are risk mitigations on schedule?

• How many known vulnerabilities exist in the system? How many have been resolved or accepted as
risks documented and transmitted to the customer?

• Have we followed the regulatory requirements?

• Have we followed the organization’s standard process model?

• Have we followed the relevant best practices?

• Have we followed the relevant policies?

• Have we modified our process to detect new potential threats?

Measures and Measurement for Secure Software Development 9
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

• How much residual security risk exists in the operational system? How much confidence do you have in
this answer?

• Have we created any unintended security consequences with anything else we have done?

• How efficiently has the security investment been used?

• Have my choices in security improvements been well timed, well spent, and appropriate?

• Are my customers satisfied with the product’s security?

These questions can form a solid basis for measurement in most development organizations, regardless
of size or methods employed. They are presented here to further the discussion of what constitutes
adequate measurement to address security issues during development, and should not be interpreted as
exhaustive. Each question requires some extensive, non-trivial work to come up with agreed upon definitions
before it can be measured.

Community of Interest
The continuing onslaught of software systems by malicious actors has prompted a great deal of activity.
Every week there are new stories of compromised systems, yielding private information. Recently, we’ve
again seen cyberwar activities that raise new concern for national security. And we still see the deployment
of new software-intensive systems that do not perform as intended and that enable exploitation.

In the last few years, the development community and the acquirers of software systems have initiated
several collaborative efforts aimed at improving the trustworthiness of software. One such effort has resulted
in the development of a Software Assurance Evidence Metamodel (SAEM). The published specification
defines terms and characterizes software assurance evidence that can be used for judging whether a
particular software system fulfills a given set of requirements. Although this is only the first in a series of
specifications, it represents a promise leading to the creation of new tools related to software assurance.
Evidence is defined as facts, which are grouped in the following categories:

• software artifacts

• software operational environment

• methodologies

• development process

• people

• development environment

• regulatory compliance controls

This effort is being led by Adelard LLP, KDM Analytics/Hatha Systems, Lockheed Martin, Computer
Sciences Corporation, and Benchmark Consulting and is supported by the University of York, MITRE, and
the SEI.

Another broad-reaching effort was initiated by the U.S. Department of Defense (DoD), Department of
Homeland Security (DHS), and National Institute of Standards and Technology Software Assurance
(SwA) Measurement Working Group. The Practical Measurement Framework for Software Assurance
and Information Security resulting from the effort of industry, government, and academic collaborators
will be published online in October 2008. Given the long term nature of the collaboration, the Practical
Measurement Framework leverages several useful resources that have become available, particularly the
Common Vulnerabilities and Exposures (CVE), Common Control Enumeration (CCE), Common Weakness
Enumeration (CWE), and Common Attack Pattern Enumeration and Classification (CAPEC).

The Common Vulnerabilities and Exposures69 (CVE) list is probably the best known of the above resources,
in that it has gained widespread agreement and adoption. It is a valuable resource that provides the
community with an ability to communicate effectively about vulnerabilities of software systems. Begun in
1999, the dictionary currently lists about 6,000 publicly known vulnerabilities. The Common Weakness

69. http://cve.mitre.org/

http://cve.mitre.org/
http://cwe.mitre.org/data/index.html

Measures and Measurement for Secure Software Development 10
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Enumeration70 (CWE) is of particular interest to the development community, since it lists some 605
(as of Sept 2008) weaknesses in source code and operational systems related to architecture and design.
This insight can lead to useful measurements regarding assurance quality and compliance and also to the
development of new tools for building and evaluating software.

The Common Attack Pattern Enumeration and Classification71 (CAPEC) addresses the need to identify
how vulnerabilities are exploited by giving the community a “firm grasp of the attacker’s perspective and
the approaches used to exploit software.” Knowledge of attack patterns can be especially useful during
development activities to build defense into the software system. These resources and more have been

established by MITRE and can be accessed directly or through their website, Making Security Measurable72.
The Practical Measurement Framework provides measurement insight utilizing these and other resources
such as ISO/IEC standards 15939, 16085, 21827, 27001, and 27004, the CMMI Measurement & Analysis
Process Area, and the CMMI GQ(I)M template (provided as an appendix).

The main organizing principle of the Practical Measurement Framework addresses concerns of poor-quality,
unreliable, and non-secure software through the measurement of software assurance goals and objectives
at project, program, and enterprise levels. It presents generic key measures from the supplier, acquirer, and
the practitioner perspectives and cross-references these measures to the resources mentioned above when
appropriate. Each perspective identifies the Measure, Information Need, and Benefit grouped by activity. For
example, Table 3 shows a (draft) portion of the document regarding Supplier Measures During Design.

Table 3. Supplier Measures During Design

Measures Information Need Benefit

Number of entry points
for a module (should be
as low as appropriate)

Reduce opportunity for
back doors

Percent of data input
components that
positively validate all
data input

Determine if data
validation is handled as
required

Design

Percent of data input
components that
positively validate all
data input

Identify origins of defects

(injection points during
the SDLC)

Ascertain that future
application handles data
inputs as required

Reduce opportunity for
exploits

Reduce attack surface

Tools
Several tools now exist for checking source code for security vulnerabilities and often output measurements
as explicit results. Although many companies delineate the conceptual basis for their tools, few offer specific
guidance regarding the measurements employed. Two companies provide concrete examples of their use of
measurement.

1. Microsoft’s Secure Windows Initiative used the Relative Attack Surface Quotient (RASQ) as initially

presented by Michael Howard [Howard 200377]. This calculated number is put forth as a cyclomatic
complexity measure for security that yields a relative metric of a product’s “attackability.” The measure
is based on the identification of all the external exposures in the product code, with the goal of reducing
the product’s attack profile. It is of limited use because the measures are meaningful only for like
products, but an independent evaluation did confirm the measure’s effectiveness [Ernst & Young LLP

70. http://cwe.mitre.org/data/index.html
71. http://capec.mitre.org/index.html
72. http://makingsecuritymeasurable.mitre.org/

http://cwe.mitre.org/data/index.html
http://capec.mitre.org/index.html
http://makingsecuritymeasurable.mitre.org/
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_howard03
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1071-BSI/version/live#dsy1071-BSI_ernst

Measures and Measurement for Secure Software Development 11
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

200378]. Manadhata and Wing from Carnegie Mellon’s Computer Science Department also successfully

applied the measurement to Linux [Manadhata 200479].

2. Many static analysis tools exist that do a competent job of identifying common vulnerabilities as the
code is being written by using contextual analysis that is language specific. For example, Ounce Labs’
Prexis computes a V-density measure to relate the number and criticality of vulnerabilities in the code
for project decision-making. As an integrated software risk management and vulnerability assessment
product, Prexis includes (1) Prexis/Engine: Source Code Vulnerability Scanning and Knowledgebase
Core, (2) Management Risk Dashboard, and (3) Developer Remediation Workbench for the product
development life cycle.

Also see the following BSI content areas: Black Box Testing Tools81, Code Analysis Tools83, and Modeling

Tools85. Note that spreadsheet programs, statistical packages, and database programs can be very helpful
for some measurement and analysis purposes. Some vendors also offer tools that harvest data from other
databases and repositories to produce a variety of measurement reports.

Various development tools now include static and dynamic capabilities for analyzing security characteristics
within the code, and integrated developer environments become easier to use as new releases cater to
the community’s need for better security tools. Several companies now offer complete development
environments which incorporate functional, non-functional, and runtime analysis. White box testing tools
are available to integrate into the development environment that offer interactive feedback and remediation
suggestions to the developer during the coding process. Developers can then see the impact of their coding
decisions and can choose between suggested remedies to the code. This proactive ability of some of the new
tools should not only help to accomplish secure coding but also improve quality.

Maturity of Practice
Software measurement is becoming a somewhat mature field, as evidenced by professional and international
standards, specialized conferences, and several decades of literature and research. In spite of this history, the
practice of software measurement is still highly variable among software development organizations, with
many doing little to measure their projects and products during development. Also, very few organizations
employ any form of measurement, much less sophisticated data analysis techniques for decision making, to
assess the security characteristics of their products in a quantitative manner during development. Indeed, few
even address security concerns in any manner. Very little exists in the published literature concerning the use
of software measurement with respect to characterizing security concerns during software development.

Appendix: Indicator Template

Current Version
The current version of the indicator template is shown below. Fields that have been added based on user
feedback are shown in italics.

81. http://buildsecurityin.us-cert.gov/bsi/articles/tools/black-box.html (Black Box Testing)
83. http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html (Source Code Analysis)
85. http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling.html (Modeling Tools)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1071-BSI/version/live#dsy1071-BSI_ernst
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement/1070-BSI/version/live#dsy1070-BSI_manadhata04
http://buildsecurityin.us-cert.gov/bsi/articles/tools/black-box.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/modeling.html

Measures and Measurement for Secure Software Development 12
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Field Descriptions

Date

Indicator Name/
Title

Objective Describe the objective or purpose of the indicator.

Questions List the question(s) the user of the indicator is trying
to answer. Examples: Is the project on schedule?
Is the product ready to ship? Should we invest
in moving more software organizations to CMM
maturity level 3?

Visual Display Provide a graphical view of the indicator.

Measures and Measurement for Secure Software Development 13
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Perspective Describe the audience (for whom is this display
intended) for the visual display.

Input(s)

- Data Elements List all the data elements in the production of the
indicator.

- Definition Precisely define the data element or point to where
the definition can be found.

Data Collection

- How Describe how the data will be collected.

- When/How Often Describe when the data will be collected and how
often.

- By Whom Specify who will collect the data (an individual,
office, etc.)

- Form(s) Refer to any standard forms for data collection (if
applicable) and provide information about where to
obtain them.

Data Reporting

- Responsibility
for Reporting

Indicate who has responsibility for reporting the data

- By/To Whom Indicate who will do the reporting and to whom
the report is going. This may be an individual or an
organizational entity.

- How Often Specify how often the data will be reported (daily,
weekly, monthly, as required, etc.)

Data Storage

- Where Indicate where the data is to be stored.

- How Indicate the storage media, procedures, and tools for
configuration control.

- Security Specify how access to this data will be controlled.

Algorithm Specify the algorithm or formula required to
combine data elements to create input values for
the indicator. It may be very simple, such as Input1/
Input2, or it may be much more complex. It should
also include how the data is plotted on the graph.

Measures and Measurement for Secure Software Development 14
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

Assumptions Identify any assumptions about the organization,
its processes, life cycle models, and so on that are
important conditions for collecting and using this
indicator.

Interpretation Describe what different values of the indicator
mean. Make it clear how the indicator answers the
“Questions” section above. Provide any important
cautions about how the data could be misinterpreted
and measures to take to avoid misinterpretation.

Probing Questions List questions that delve into the possible reasons
for the value of an indicator, whether performance is
meeting expectations or whether appropriate action
is being taken.

Analysis Specify what type of analysis can be done with the
information.

Evolution Specify how the indicator can be improved over
time, especially as more historical data accumulates
(e.g., by comparing projects using new processes,
tools, environments with a baseline; using baseline
data to establish control limits around some
anticipated value based on project characteristics).

Feedback Guidelines Include a description of the procedure to use
when recommending modification to the indicator
template.

X-References If the values of other defined indicators influence the
appropriate interpretation of the current indicator,
refer to them here.

Source: Goethert, Wolfhart & Siviy, Jeannine. Applications of the Indicator Template for Measurement
and Analysis (CMU/SEI-2004-TN-024). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004. http://www.sei.cmu.edu/publications/documents/04.reports/04tn024.html.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

1. mailto:permission@sei.cmu.edu

mailto:permission@sei.cmu.edu

Measures and Measurement for Secure Software Development 15
ID: 227-BSI | Version: 17 | Date: 11/14/08 3:10:55 PM

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

